

# **NVIDIA RTX PRO 5000 Blackwell**

Powering the next era of Al.



#### Transform Workflows With Next-Level Workstation Performance

As AI continues to advance at an incredible pace, industries face mounting pressure to harness its transformative power and adopt tools capable of handling generative AI, real-time simulation, and hyper-realistic rendering. Enterprises need solutions that combine breakthrough performance, scalability, and versatility to tackle the rise of increasingly complex workloads—from training domain-specific AI models to rendering billion-polygon engineering designs or simulating real-world physics with higher fidelity and precision.

Unlock next-level AI performance and neural rendering capabilities with the NVIDIA RTX PRO™ 5000 Blackwell. Built on the groundbreaking NVIDIA Blackwell architecture and equipped with 48 GB of ultra-fast GDDR7 memory, it empowers professionals to accelerate AI development, LLM inference, and generative AI workflows alongside high-fidelity simulations, video production, and complex 3D modeling—all from your desktop. With twice the memory of the last generation, work with big data, make complex 3D models, and run AI-enhanced multi-app workflows without interruption.

With transformative AI performance gains over the previous generation, you can run complex generative AI workflows more efficiently using the new FP4 data format, which reduces memory demands. Accelerate graphics workloads with dramatic speed boosts to design hyper-detailed vehicles, immersive VR environments, and lifelike renders faster than ever. Streamline video production pipelines with up to 3 encode and 3 decode engines that support 4:2:2 color formats and multi-stream workflows.

With the RTX PRO 5000, seamlessly integrate local Al assistants, craft photorealistic visuals with neural rendering, and optimize precision-critical simulations for engineering and scientific research. Whether you're pushing the boundaries of generative Al, rendering massive 3D scenes, or simulating real-world physics, the NVIDIA RTX PRO 5000 Blackwell delivers the tools to innovate faster.

#### **Key Features**

- Enhanced Streaming Multiprocessors (SMs) built for neural shaders
- 5th Gen Tensor Cores support FP4 precision, DLSS 4 Multi Frame Generation
- 4th Gen Ray Tracing Cores built for detailed geometry
- > 48 GB of GDDR7 memory
- > 1.3 TB/s of memory bandwidth
- > 9th Gen NVENC and 6th Gen NVDEC with 4:2:2 support
- > PCle Gen 5
- > Four Display Port 2.1b connectors
- Multi-instance GPU (MIG) support
- > Al Management Processor

#### **Breakthrough Innovations**

The NVIDIA Blackwell architecture combines breakthrough AI, ray tracing, and neural rendering technology, with massive performance and memory improvements to drive cutting-edge professional creative, design, and engineering workflows and power the next decade of innovation.

NVIDIA Blackwell Streaming Multiprocessor: The new SM features increased processing throughput, and new neural shaders that integrate neural networks inside of programmable shaders to drive the next decade of Al-augmented graphics innovations.

5th Gen Tensor Cores: Deliver up to 3X the performance of the previous generation and support for FP4 precision for faster AI model processing times with reduced memory usage, enabling local fine-tuning of LLMs and generative Al.

4th Gen Ray Tracing Cores: Double the ray-triangle intersection rate of the previous generation to create photoreal, physically accurate scenes and immersive 3D designs with RTX Mega Geometry, which enables up to 100X more ray-traced triangles.

Next-Gen Video Engines: Enhance video conferencing, video production, and streaming workflows with real-time AI processing. Ninth-generation NVENC and sixth-generation NVDEC engines provide support for 4:2:2 encoding and decoding to explore a new realm of high-resolution video workflows.

GDDR7 Memory: New and improved GDDR7 memory significantly boosts bandwidth and capacity, empowering your applications to run faster, and work with larger, more complex datasets. With 48 GB of GPU memory and 1.3 TB/s bandwidth, tackle massive 3D and AI projects, fine-tune AI models locally, explore large-scale VR environments, and drive larger multi-app workflows.

DLSS 4: Multi Frame Generation ensures ultra-smooth frame pacing for lifelike simulations. Experience up to 3X faster frame rates and stunning image quality in supported game engines and 3D rendering applications for smoother, more responsive performance.

PCle Gen 5: Support for PCle Gen 5 provides double the bandwidth of PCle Gen 4, improving data-transfer speeds from CPU memory and unlocking faster performance for data-intensive tasks like AI, data science, and 3D modeling.

DisplayPort 2.1: Achieve unparalleled visual clarity and performance, driving highresolution displays at up to 8K at 240 Hz and 16K at 60 Hz. Increased bandwidth enables seamless multi-monitor setups, ideal for multitasking and collaboration, while HDR and higher color depth support ensures superior color accuracy for precision work, such as video editing, 3D design, and live broadcasting.

Universal MIG: Split a single RTX PRO 5000 into multiple isolated instances, each with its own resources, allowing for concurrent execution of multiple workloads, optimized GPU utilization, and secure isolation of different applications or users.

### **Enterprise Reliability**

deliver unparalleled performance, reliability, and support. Every GPU is rigorously tested for a wide range of design, engineering, and AI workflows and continually optimized through enterprise drivers. With extensive ISV certifications, robust IT management tools, and enterprise-grade support, RTX PRO workstations are the trusted choice for enterprise and mission-critical work.

#### **Specifications**

| GPU architecture          | NVIDIA Blackwell                                       |
|---------------------------|--------------------------------------------------------|
| NVIDIA® CUDA® Cores       | 14,080                                                 |
| Tensor Cores              | 5th Generation                                         |
| Ray Tracing Cores         | 4th Generation                                         |
| GPU memory                | 48 GB GDDR7 with ECC                                   |
| Memory interface          | 384-bit                                                |
| Memory bandwidth          | 1344 GB/s                                              |
| System interface          | PCIe 5.0 x16                                           |
| Display connectors        | 4x DisplayPort 2.1b                                    |
| Max simultaneous displays | > 4x 3840 x 2160 @ 165 Hz                              |
|                           | > 2x 7680 x 4320 @ 100 Hz                              |
| Video Engines             | > 2x NVENC (9th Gen)                                   |
|                           | > 2x NVDEC (6th Gen)                                   |
| MIG Instance Types        | > Up to 2x 24 GB                                       |
|                           | > Up to 1x 48 GB                                       |
| Power consumption         | Total board power: 300 W                               |
| Power connector           | 1x PCle CEM5 16-pin                                    |
| Thermal solution          | Active                                                 |
| Form factor               | 4.4" x 10.5" L, dual slot, full height                 |
| Graphics APIs             | DirectX 12, Shader Model 6.6, OpenGL 4.6³, Vulkan 1.3³ |
| Compute APIs              | CUDA 11.6, OpenCL 3.0, DirectCompute                   |

## Ready to Get Started?

To learn more, visit: nvidia.com/rtx-pro-5000

- 1. Peak rates based on GPU Boost Clock.
- 2. Effective FP4 TOPS with sparsity.
- 3. Product is based on a published Krhonos specification and is expected to pass the Khronos conformation testing process when available. Current conformance status can be found at www.khronos.org/conformance

